102 research outputs found

    Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies

    Get PDF
    Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could be used more effectively if they benefited from the scientific and technical resources currently available for more common breeds. Last but not least, public policies need to enable improved information concerning the genetic resources and breeding tools available for the agroecological management of livestock production systems, and facilitate its assimilation by farmers and farm technicians

    Detection of a Cis eQTL Controlling BMCO1 Gene Expression Leads to the Identification of a QTG for Chicken Breast Meat Color

    Get PDF
    Classical quantitative trait loci (QTL) analysis and gene expression QTL (eQTL) were combined to identify the causal gene (or QTG) underlying a highly significant QTL controlling the variation of breast meat color in a F2 cross between divergent high-growth (HG) and low-growth (LG) chicken lines. Within this meat quality QTL, BCMO1 (Accession number GenBank: AJ271386), encoding the β-carotene 15, 15′-monooxygenase, a key enzyme in the conversion of β-carotene into colorless retinal, was a good functional candidate. Analysis of the abundance of BCMO1 mRNA in breast muscle of the HG x LG F2 population allowed for the identification of a strong cis eQTL. Moreover, reevaluation of the color QTL taking BCMO1 mRNA levels as a covariate indicated that BCMO1 mRNA levels entirely explained the variations in meat color. Two fully-linked single nucleotide polymorphisms (SNP) located within the proximal promoter of BCMO1 gene were identified. Haplotype substitution resulted in a marked difference in BCMO1 promoter activity in vitro. The association study in the F2 population revealed a three-fold difference in BCMO1 expression leading to a difference of 1 standard deviation in yellow color between the homozygous birds at this haplotype. This difference in meat yellow color was fully consistent with the difference in carotenoid content (i.e. lutein and zeaxanthin) evidenced between the two alternative haplotypes. A significant association between the haplotype, the level of BCMO1 expression and the yellow color of the meat was also recovered in an unrelated commercial broiler population. The mutation could be of economic importance for poultry production by making possible a gene-assisted selection for color, a determining aspect of meat quality. Moreover, this natural genetic diversity constitutes a new model for the study of β-carotene metabolism which may act upon diverse biological processes as precursor of the vitamin A

    Playing Darwin. Part B. 20 years of domestication in Drosophila subobscura

    Get PDF
    Adaptation to a new environment (as well as its underlying mechanisms) is one of the most important topics in Evolutionary Biology. Understanding the adaptive process of natural populations to captivity is essential not only in general evolutionary studies but also in conservation programmes. Since 1990, the Group of Experimental Evolution (CBA/FCUL) has been performing long-term, real-time evolutionary studies, with the characterization of laboratory adaptation in populations of Drosophila subobscura founded in different times and from different locations. Initially, these experiments involved phenotypic assays and more recently were expanded to studies at the molecular level (microsatellite and chromosomal polymorphisms) and with different population sizes. Throughout these two decades, a clear pattern of evolutionary convergence to long-established laboratory populations has been consistently observed in several life-history traits. However, contingencies across foundations were also found during the adaptive process. In characters with complex evolutionary trajectories, the data suggested that the comparative method lacked predictive capacity relative to real-time evolutionary trajectories (experimental evolution). Microsatellite analysis revealed general similarity in gene diversity and allele number between studied populations, as well as an unclear association between genetic variability and evolutionary potential. Nevertheless, ongoing studies in all foundations are being carried out to further test this hypothesis. A comparison between recently introduced and long-term populations (founded from the same natural location) has shown higher degree of chromosomal polymorphism in recent ones. Finally, our findings suggest higher heterogeneity between small-sized populations, as well as a slower evolutionary rate in characters close to fitness (such as fecundity and mating behaviour). This comprehensive study is aimed at better understanding the processes and patterns underlying adaptation to captivity, as well as its genetic basis

    Higher heritabilities for gait components than for overall gait scores may improve mobility in ducks

    Get PDF
    International audienceAbstractBackgroundGenetic progress in selection for greater body mass and meat yield in poultry has been associated with an increase in gait problems which are detrimental to productivity and welfare. The incidence of suboptimal gait in breeding flocks is controlled through the use of a visual gait score, which is a subjective assessment of walking ability of each bird. The subjective nature of the visual gait score has led to concerns over its effectiveness in reducing the incidence of suboptimal gait in poultry through breeding. The aims of this study were to assess the reliability of the current visual gait scoring system in ducks and to develop a more objective method to select for better gait.ResultsExperienced gait scorers assessed short video clips of walking ducks to estimate the reliability of the current visual gait scoring system. Kendall’s coefficients of concordance between and within observers were estimated at 0.49 and 0.75, respectively. In order to develop a more objective scoring system, gait components were visually scored on more than 4000 pedigreed Pekin ducks and genetic parameters were estimated for these components. Gait components, which are a more objective measure, had heritabilities that were as good as, or better than, those of the overall visual gait score.ConclusionsMeasurement of gait components is simpler and therefore more objective than the standard visual gait score. The recording of gait components can potentially be automated, which may increase accuracy further and may improve heritability estimates. Genetic correlations were generally low, which suggests that it is possible to use gait components to select for an overall improvement in both economic traits and gait as part of a balanced breeding programme

    Restricted Application of Insecticides: A Promising Tsetse Control Technique, but What Do the Farmers Think of It?

    Get PDF
    Restricted application of insecticides to cattle is a cheap and safe farmer-based method to control tsetse and the diseases they transmit, i.e. human and animal African trypanosomoses. The efficiency of this new control method has been demonstrated earlier but no data is available on its perception and adoption intensity by farmers. We studied these two features in Burkina Faso, where the method has diffused thanks to two development projects. The study allowed identifying three groups of farmers with various adoption intensities, of which one was modern and two traditional. The economic benefit and the farmers' knowledge of the epidemiological system appeared to have a low impact on the early adoption process whereas some modern practices, as well as social factors appeared critical. The quality of technical support provided to the farmers had also a great influence on the adoption rate. The study highlighted individual variations in risk perceptions and benefits, as well as the prominent role of the socio-technical network of cattle farmers. The results of the study are discussed to highlight the factors that should be taken into consideration, to move discoveries from bench to field for an improved control of trypanosomoses vectors

    Evidence of maternal QTL affecting growth and obesity in adult mice

    Get PDF
    Most quantitative trait loci (QTL) studies fail to account for the effect that the maternal genotype may have on an individual’s phenotypes, even though maternal effect QTL have been shown to account for considerable variation in growth and obesity traits in mouse models. Moreover, the fetal programming theory suggests that maternal effects influence an offspring’s adult fitness, although the genetic nature of fetal programming remains unclear. Within this context, our study focused on mapping genomic regions associated with maternal effect QTL by analyzing the phenotypes of chromosomes 2 and 7 subcongenic mice from genetically distinct dams. We analyzed 12 chromosome 2 subcongenic strains that spanned from 70 to 180 Mb with CAST/EiJ donor regions on the background of C57BL/6 J, and 14 chromosome 7 subcongenic strains that spanned from 81 to 111 Mb with BALB/cByJ donor regions on C57BL/6ByJ background. Maternal QTL analyses were performed on the basis of overlapping donor regions between subcongenic strains. We identified several highly significant (P < 5 × 10−4) maternal QTL influencing total body weight, organ weight, and fat pad weights in both sets of subcongenics. These QTL accounted for 1.9-11.7% of the phenotypic variance for growth and obesity and greatly narrowed the genomic regions associated with the maternal genetic effects. These maternal effect QTL controlled phenotypic traits in adult mice, suggesting that maternal influences at early stages of development may permanently affect offspring performance. Identification of maternal effects in our survey of two sets of subcongenic strains, representing approximately 5% of the mouse genome, supports the hypothesis that maternal effects represent significant sources of genetic variation that are largely ignored in genetic studies

    Epilepsy Caused by an Abnormal Alternative Splicing with Dosage Effect of the SV2A Gene in a Chicken Model

    Get PDF
    Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans
    corecore